3 个回答
yarn-application:
Application Mode会在Yarn上启动集群, 应用jar包的main函数(用户类的main函数)将会在JobManager上执行. 只要应用程序执行结束, Flink集群会马上被关闭. 也可以手动停止集群。与Per-Job-Cluster的区别: 就是Application Mode下, 用户的main函数是在集群中(job manager)执行的
Application Mode会在Yarn上启动集群, 应用jar包的main函数(用户类的main函数)将会在JobManager上执行. 只要应用程序执行结束, Flink集群会马上被关闭. 也可以手动停止集群。与Per-Job-Cluster的区别: 就是Application Mode下, 用户的main函数是在集群中(job manager)执行的
发布于:3个月前 (02-06) IP属地:四川省
yarn-per-job:
顾名思义,在Per-Job模式下,每个提交到YARN上的作业会各自形成单独的Flink集群,拥有专属的JobManager和TaskManager。可见,以Per-Job模式提交作业的启动延迟可能会较高,但是作业之间的资源完全隔离,一个作业的TaskManager失败不会影响其他作业的运行,JobManager的负载也是分散开来的,不存在单点问题。当作业运行完成,与它关联的集群也就被销毁,资源被释放。所以,Per-Job模式一般用来部署那些长时间运行的作业。
顾名思义,在Per-Job模式下,每个提交到YARN上的作业会各自形成单独的Flink集群,拥有专属的JobManager和TaskManager。可见,以Per-Job模式提交作业的启动延迟可能会较高,但是作业之间的资源完全隔离,一个作业的TaskManager失败不会影响其他作业的运行,JobManager的负载也是分散开来的,不存在单点问题。当作业运行完成,与它关联的集群也就被销毁,资源被释放。所以,Per-Job模式一般用来部署那些长时间运行的作业。
发布于:3个月前 (02-06) IP属地:四川省
yarn-session:
Session模式是预分配资源的,也就是提前根据指定的资源参数初始化一个Flink集群,并常驻在YARN系统中,拥有固定数量的JobManager和TaskManager(注意JobManager只有一个)。提交到这个集群的作业可以直接运行,免去每次分配资源的overhead。但是Session的资源总量有限,多个作业之间又不是隔离的,故可能会造成资源的争用;如果有一个TaskManager宕机,它上面承载着的所有作业也都会失败。另外,启动的作业越多,JobManager的负载也就越大。所以,Session模式一般用来部署那些对延迟非常敏感但运行时长较短的作业。
Session模式是预分配资源的,也就是提前根据指定的资源参数初始化一个Flink集群,并常驻在YARN系统中,拥有固定数量的JobManager和TaskManager(注意JobManager只有一个)。提交到这个集群的作业可以直接运行,免去每次分配资源的overhead。但是Session的资源总量有限,多个作业之间又不是隔离的,故可能会造成资源的争用;如果有一个TaskManager宕机,它上面承载着的所有作业也都会失败。另外,启动的作业越多,JobManager的负载也就越大。所以,Session模式一般用来部署那些对延迟非常敏感但运行时长较短的作业。
发布于:3个月前 (02-06) IP属地:四川省
我来回答
您需要 登录 后回答此问题!