3 个回答
具体的实现如下:
1、创建基础表与物化视图
1、创建基础表与物化视图
-- 创建源表(启用CDC)
CREATE TABLE source_orders (
order_id BIGINT,
user_id BIGINT,
amount DECIMAL,
status STRING,
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'connector' = 'kafka',
'topic' = 'orders',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);
-- 创建物化视图(带增量更新逻辑)
CREATE MATERIALIZED VIEW incremental_orders_mv
WITH (
'materialized-view.refresh.interval' = '1m', -- 刷新间隔
'materialized-view.unique-key' = 'order_id' -- 唯一键
) AS
SELECT
user_id,
SUM(amount) AS total_amount,
COUNT(DISTINCT order_id) AS order_count
FROM source_orders
GROUP BY user_id;
发布于:1周前 (05-27) IP属地:
3、增量更新物化视图
-- 创建更新流(处理CDC事件)
CREATE TABLE cdc_update_stream (
order_id BIGINT,
before ROW<status STRING>,
after ROW<status STRING, amount DECIMAL>
) WITH (
'connector' = 'paimon-cdc',
'table-name' = 'source_orders'
);
-- 增量更新物化视图逻辑
INSERT INTO incremental_orders_mv
SELECT
COALESCE(after.user_id, before.user_id) AS user_id,
CASE
WHEN after.amount IS NOT NULL THEN
SUM(after.amount) OVER (PARTITION BY user_id)
ELSE
SUM(before.amount) OVER (PARTITION BY user_id)
END AS total_amount,
COUNT(DISTINCT COALESCE(after.order_id, before.order_id))
OVER (PARTITION BY user_id) AS order_count
FROM cdc_update_stream;
发布于:1周前 (05-27) IP属地:
2、配置CDC触发器
// Flink CDC连接器配置(Java示例)
DebeziumSourceFunction<RowData> sourceFunction = MySQLSource.<RowData>builder()
.hostname("mysql-host")
.port(3306)
.databaseList("paimon_db") // 监听数据库
.tableList("paimon_db.source_orders") // 监听表
.deserializer(new JsonDebeziumDeserializationSchema())
.build();
DataStream<RowData> cdcStream = env.addSource(sourceFunction);
发布于:1周前 (05-27) IP属地:
我来回答
您需要 登录 后回答此问题!