Spark任务shuffle太慢,有没有哪些可调优的方案?

提问者:帅平 问题分类:大数据
Spark任务shuffle太慢,有没有哪些可调优的方案?

 您阅读本篇文章共花了: 

7 个回答
不换爱人
不换爱人
spark.shuffle.consolidateFiles,默认值是false,如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。调优建议:
如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。
发布于:5个月前 (11-20) IP属地:四川省
鹿归时心喜
鹿归时心喜
spark.shuffle.sort.bypassMergeThreshold,默认值是200,当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。调优建议:
当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
发布于:5个月前 (11-20) IP属地:四川省
你我这辈子最的依靠
你我这辈子最的依靠
spark.shuffle.manager,默认值是sort,该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。调优建议是:
由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。
发布于:5个月前 (11-20) IP属地:四川省
蔓延的小思念
蔓延的小思念
spark.shuffle.memoryFraction,默认值是0.2,该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。调优建议:
在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。
发布于:5个月前 (11-20) IP属地:四川省
拜你所赐
拜你所赐
spark.shuffle.io.retryWait,默认值是5s,该参数代表了每次重试拉取数据的等待间隔,调优建议:
建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。
发布于:5个月前 (11-20) IP属地:四川省
西瓜女皇
西瓜女皇
spark.shuffle.io.maxRetries,默认值是3,shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。调优建议:
对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
发布于:5个月前 (11-20) IP属地:四川省
最后一丝温柔
最后一丝温柔
spark.reducer.maxSizeInFlight,默认值是48m,该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。调优建议:
如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
发布于:5个月前 (11-20) IP属地:四川省
我来回答