2 个回答
Flink SQL → DataStream的互操作如下:
1、通过SQL定义数据源,供DataStream使用
1、通过SQL定义数据源,供DataStream使用
// 定义SQL表(例如Kafka源)
tableEnv.executeSql(
"CREATE TABLE kafka_source (" +
" user STRING, " +
" cnt INT" +
") WITH (...)"
);
// 转换为DataStream
Table table = tableEnv.sqlQuery("SELECT * FROM kafka_source");
DataStream<Tuple2<String, Integer>> ds = tableEnv.toAppendStream(table, Row.class);
2、结合DataStream API增强逻辑// SQL预处理数据(过滤)
Table filteredTable = tableEnv.sqlQuery("SELECT * FROM kafka_source WHERE cnt > 100");
DataStream<Row> filteredDS = tableEnv.toAppendStream(filteredTable);
// 使用DataStream API做窗口聚合
DataStream<Tuple2<String, Integer>> windowedDS = filteredDS
.map(row -> Tuple2.of(row.getField(0), row.getField(1)))
.keyBy(value -> value.f0)
.window(TumblingEventTimeWindows.of(Time.seconds(10)))
.sum(1);
发布于:2周前 (05-29) IP属地:
DataStream → Flink SQL的互操作如下:
1、注册DataStream为表
1、注册DataStream为表
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 创建DataStream(例如Kafka数据)
DataStream<Tuple2<String, Integer>> inputDS = env.addSource(...);
// 注册为表(需定义Schema)
tableEnv.createTemporaryView("kafka_source", inputDS,
Schema.newBuilder()
.column("user", DataTypes.STRING())
.column("cnt", DataTypes.INT())
.build());
2、通过SQL操作DataStream数据-- SQL查询并过滤数据
SELECT user, SUM(cnt) as total
FROM kafka_source
GROUP BY user;
3、将SQL结果转回DataStream// 执行SQL并获取结果流
TableResult result = tableEnv.executeSql(
"SELECT user, SUM(cnt) as total FROM kafka_source GROUP BY user");
// 转换为DataStream(需指定类型)
DataStream<Row> resultDS = tableEnv.toAppendStream(result, Row.class);
resultDS.print();
发布于:2周前 (05-29) IP属地:
我来回答
您需要 登录 后回答此问题!