2 个回答
批处理场景:Table → DataSet的转换方法主要使用BatchTableEnvironment的toDataSet()函数进行转换,代码示例如下:
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tableEnv = BatchTableEnvironment.create(env);
// 创建表并执行查询
Table resultTable = tableEnv.sqlQuery("SELECT name, age FROM users WHERE age > 30");
// 转换为DataSet
DataSet<Row> dataSet = tableEnv.toDataSet(resultTable, Row.class);
// 处理DataSet
dataSet.print();
发布于:3周前 (05-16) IP属地:
流处理场景:Table → DataStream的转换方法主要是使用toAppendStream()函数或者toRetractStream()函数进行转换,代码示例如下:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 创建表并执行查询
Table resultTable = tableEnv.sqlQuery("SELECT user, COUNT(url) FROM clicks GROUP BY user");
// 转换为DataStream(根据表是否更新选择方法)
// 场景1:仅插入结果(如无GROUP BY的过滤)
DataStream<Row> appendStream = tableEnv.toAppendStream(resultTable, Row.class);
// 场景2:含更新操作(如GROUP BY聚合)
DataStream<Tuple2<Boolean, Row>> retractStream =
tableEnv.toRetractStream(resultTable, Row.class);
// 进一步处理DataStream
retractStream.print();
env.execute();
发布于:3周前 (05-16) IP属地:
我来回答
您需要 登录 后回答此问题!